
Toolbox Content
Python Language
Assignment
Binding names to values

You're using an assignment statement when you define or update a variable.

Initialize the count
count = 0

The above assigns the value 0 to count.

In Python the variable count is just a "name", and assignment is defined as "binding names to values".

Right to Left

An expression like x = x + 1 might be confusing until you understand that the right-
hand side is evaluated before the left-hand side of an assignment statement.

Read assignments right-to-left! So think of this in 2 steps:

1. The x + 1 creates a new integer value.
2. The new value is assigned to x.

Assign by Reference

A name that's assigned or "bound" to a value is like a sticky-note.

The name doesn't contain the value, it just labels it.
And just like many sticky-notes can be on the same box, more than one name
can refer to the same value.

For example

The names 'items' and 'a' in the following both reference the same list:
items = [5, 6, 7]
a = items
a[0] = 4
print(items) # prints [4, 6, 7]

Notice this means you can't copy an object like a list by simple assignment. If you wanted a separate copy of the list above you
could use a = items.copy(), to bind the variable name a to a new list object returned by the copy() method.

Augmented Assignment

Expressions like y = y + 5 are very common, so there is a shorter way to write them!

y += 5 # Add 5 to y

You can replace the + operator above with any of the binary operators:

y *= 2 // double the y-value
x -= 1 // subtract 1 from x

These forms of assignment can even be more efficient than their longhand equivalents, since the target of the assignment can be
updated in-place rather than first creating a new object prior to assignment.

Multiple Targets: unpacking

The left-hand side of an assignment statement can be a list of names!

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 1 of 58

If so, the right-hand side must be iterable, and the names on the left are bound to the sequence in order.

a, b, c = (1, 2, 3) # result: a==1, b==2, c==3

This is also known as "unpacking" a sequence into variables.

Un-Assigning

Can you "unbind" a name once it has been assigned to? Of course you can! This is Python after all :-)

direction = "North"
del direction
print(direction) # NameError: name 'direction' is not defined

Assignment statements: https://docs.python.org/3/reference/simple_stmts.html#assignment-statements

Bitwise Operators
Manipulating integers at the binary level

Python provides several built-in operators for manipulating integers at the binary level.

Shifting Left and Right

As you might expect from the name, these operators shift the bits to the left or right by the specified number of positions. For
example:

x = 0b0010
y = x >> 1 # Shift right: y = 0b0001
y = x << 1 # Shift left: y = 0b0100
y = x >> 2 # Shift right: y = 0b0000
y = x << 2 # Shift left: y = 0b1000

Logical Operations: and, or, xor, not

Bitwise logical operations perform the fundamental boolean logic functions:

OperationSymbol Result for Each Bit Example: A op B
AND & 1 if both A and B are 1 0b0110 & 0b1110 => 0b0110
OR | 1 if either A or B are 1 0b0110 | 0b1110 => 0b1110

XOR ^ 1 if only A or B is 1 0b0110 ^ 0b1110 => 0b1000
NOT ~ Flip from 1 to 0 or vice-versa ~0b0110 => 0b1001

Bitwise Operations: https://docs.python.org/3/library/stdtypes.html#bitwise-operations-on-integer-types

Blank Lines and Whitespace
Spaced out code

Like most programming languages, Python ignores blank lines in your code.

Adding blank lines can help make your code more readable. A good practice is to use blank lines to separate logical sections of your
code.

Additional Whitespace (spaces) in your code should be used in keeping with the accepted style of the language. The example code
in CodeSpace follows the official Python Style Guide (PEP-008).

ASSIGNMENT STATEMENTS - PYTHON

BITWISE OPERATIONS - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 2 of 58

https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
https://docs.python.org/3/library/stdtypes.html#bitwise-operations-on-integer-types

Style Guide: https://www.python.org/dev/peps/pep-0008/

bool
Booleans, True or False

The flow of your code often depends on whether a condition is True or False.

True and False are called Boolean values, named for a famous Englishman, George Boole - one of the great mathematical geniuses
of his day. Back in the mid 1800's he invented the way we express logic in computing today. I think he would have loved CodeSpace!

The values True and False are special Python keywords too.

Your code will often test conditions, like "Is count > 22 ?"
The result of this sort of test will be either True or False!

A bool is a value that can be True or False.

You can define your own bool variables:

game_over = False
while game_over == False:
 # Continue playing game!
 next_level()

In Python, you can convert other types like string or int to bool with bool().

"Truthy" or "Falsy"?

How does Python decide if a non-bool type is True or False?

Zero values and empty strings or lists are False.
Other values are True.

Ex:

bool(0) # is False
bool(1) # is True

bool("") # is False
bool("Hello, World!") # is True

Need an expression that's always True ? You could write:

True is True
...But it's easier just to use True by itself!

Ex:

The classic infinite loop in Python
while True:
 do_something_forever()

Boolean Values: https://docs.python.org/3/library/stdtypes.html#boolean-values

Branching
Decision points in code

STYLE GUIDE - PYTHON

BOOLEAN VALUES - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 3 of 58

https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/library/stdtypes.html#boolean-values

As your code runs, one line at a time, there will be points where a decision has to be made.

Your code will take a different branch depending on the value of x or some other condition.

The condition is a Boolean value, often the result of a comparison operator.

The if condition_A statement tells Python to only run the block of code indented beneath it if condition_A is True.

An if statement can be followed by one or more elif statements. That's short for "else if", and means the following block will run
only if the prior if or elif was False.

if condition_A:
 # Do something amazing...
elif condition_B:
 # Do this only if condition_B is True
 # (...and condition_A was False!)

An if statement can end with an else statement:

if condition_A:
 # Do something amazing...
elif condition_B:
 # Do this only if condition_B is True
 # (...and condition_A was False!)
else:
 # Finally, do this if all of the prior if/elif conditions were False

Break and Continue
Loop control flow statements

Are you're stuck in a loop ?

Fear not, Python gives you a couple of ways to get un-stuck!

Break OUT!

A loop will continue until the condition becomes False or the iterable is exhausted. But what if you want to break out early?

Wait until button 0 is pressed
while True:
 if buttons.is_pressed(0):
 break

That's what break is for! Use it to break out of the nearest enclosing loop.

Roll On!

Normally the code inside your loop runs until the end of the indented block.

But sometimes you may want to skip back to the top and run the loop condition again.
That's where continue comes in. It jumps right back to the top of the nearest enclosing loop.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 4 of 58

break and continue: https://docs.python.org/3/reference/simple_stmts.html#break

Built-In Functions
Python's built-in functions

Python has a number of functions built into it that are always available. See the link below for the full list of built-ins. A few common
ones are listed here:

Partial list of Python 3 built-in functions:
abs(x) # Return the absolute value of a number.
all(iterable) # Return True if all elements of the iterable are true (or if the iterable is empty).
any(iterable) # Return True if any element of the iterable is true. If the iterable is empty, return False.
bin(i) # Convert an integer number to a binary string prefixed with "0b".
chr(i) # Return a single-character string corresponding to the given integer representation.
hex(x) # Convert an integer number to a lowercase hexadecimal string prefixed with "0x".
input([prompt]) # Read a line from the console and return a string. First display 'prompt' if present.
isinstance(object, type) # Return True if object is an instance of the given type or class.
len() # Return the number of items in a sequence or collection (such as length of a string).
max(iterable)
max(arg1, arg2, ...) # Return the largest item in an iterable or given arguments.
min(iterable)
min(arg1, arg2, ...) # Return the smallest item in an iterable or given arguments.
open(file, mode) # Return a file object opened in the mode specified
ord(c) # Return the integer internal representation of the given character
print(...) # Print given objects to the console.
range(stop)
range(start, stop, step) # Return a sequence of integers in the given range.
reversed(seq) # Return a reverse iterator for the given sequence.
round(number, [ndigits]) # Return a number rounded to ndigits precision after the decimal point. If ndigits is omitted o
sum(iterable) # Return the sum of all elements of the given iterable.
type(object) # Return the type of an object, as a string.

Note: To see a complete current list of built-ins for Firia IoT Python devices, run this on the REPL:

import builtins
dir(builtins)

Built-ins: https://docs.python.org/3/library/functions.html#built-in-functions

Comments
Notes to the human readers of your code

Comments are a way to put notes in your code that are ignored by the computer. In Python, the # symbol is used for comments.

Any text to the right of the # is ignored.

Check to see if we've reached combustion temperature
if temperature > 451:
 extinguish = True # Activate the sprinkler system

If comments are ignored, then what's the point?

Sometimes it is very obvious what a section of code does, but sometimes it is not! And very often it is not clear why this piece of code
exists!

BREAK AND CONTINUE - PYTHON

BUILT-INS - PYTHON BUILT-INS - MICROPYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 5 of 58

https://docs.python.org/3/reference/simple_stmts.html#break
https://docs.python.org/3/library/functions.html#built-in-functions

Comments are notes to your future self, after you've forgotten all about this code.
Comments are notes to another person who is trying to figure out what this code does.

Guideline: Big Scope → Big Comment

If the scope of the code is small, then a small comment or none at all may suffice. Strive to always comment about the reason rather
than the coding details. And avoid comments that are doomed to become untrue one day!

Which of the following comments is more useful to the reader?
Which one will still be accurate if the line of code is changed to something besides 5?

Set value to 5.
value = 5

Start with an initial maximum value.
value = 5

If the scope is big, like the whole program/module or a whole function, then a bigger comment may be good.

What is the purpose of this program? This function?

Python has a special type of comment used to document functions and modules (file-level)

Documentation Strings (docstrings)

Multiline comments surrounded by triple-quotes are used at the top of a file, or after a function definition, to document
what this code does.

"""This program makes the CodeBot rotate counterclockwise.
 You can start or stop the rotation by pressing BTN-0.
"""

def check_press():
 """Check to see if BTN-0 has been pressed."""
 return buttons.was_pressed(0)

There are Automatic Documentation Generator tools that can use docstrings to create browsable documentation for your code!

Read through the section on comments in Python's Style Guide. Proper comments are important!

Style Guide: https://www.python.org/dev/peps/pep-0008/

Comparison Operators
Testing different conditions

Expressions like x > 9 and name == "Guido van Rossum" let you compare two values.

The result of a comparison is a True or False boolean value.

For Example: given that the value assigned to x is 5 :

x > 10 is False

x < 10 is True

x == 5 is True

Another example: branching

if distanceToWall < 10:
 motors.run(LEFT, -50)
 motors.run(RIGHT, -50)

In the example above, < is the "less than" operator, and it makes the expression distanceToWall < 10 evaluate to True if the value of
distanceToWall is less than 10.

STYLE GUIDE - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 6 of 58

https://www.python.org/dev/peps/pep-0008/

You can read the expression almost like a sentence: "If distanceToWall is less than 10, run the code below."

Comparison Operators:

Operator Description
> Greater than
< Less than
== Equal to
!= Not equal to
>= Greater than or Equal to
<= Less than or Equal to

Read about other Operators too!

Comparisons: https://docs.python.org/3/library/stdtypes.html#comparisons

Constants
Unchanging values

Constants are names, just like variables, that can represent data in your code.

Like a variable, a constant has a name, data-type, and value.
But unlike a variable, a constant's value should never change.

Unlike some other programming languages, Python does not have a built-in way to declare data "constant".

In Python, constants are just variables that you promise not to change.

By convention, Python constants are named with ALL_CAPITAL_LETTERS.

But remember, the language does not prevent code from changing those variables.

Ex: [1]

PI = 3.14

Naming them with ALL_CAPS is a reminder that those values shouldn't change.

1. You should really use the math module for this particular constant though!

Data Types
str, int, float, and friends

"Data" just means information your code works with, like numbers or text.

Every variable has a type!

zipcode = 35758 # an integer type
city = "Madison" # a string type
temperature = 98.6 # a float type
hot = True # a bool type

You can use the type() builtin function to read a variable's type name.

Check out the builtin types: str, int, float, bool, None

COMPARISONS - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 7 of 58

https://docs.python.org/3/library/stdtypes.html#comparisons

Default function parameters
Values for parameters when you leave off arguments

When you define a function you can specify default values for parameters.

These are "optional arguments" - the caller can omit them!
If the caller omits arguments, those parameters will get their default values.

A test function
def func(foo, baz=4):
 print(foo, baz)

func(1, 2) # No defaults needed. Displays "1 2"
func(3) # Use the default 'bar'. Displays "3 4"

A similar looking but different concept is keyword arguments.

dictionary
Dictionary - Python's Mapping type

A dictionary is a container that holds keys and values. It supports fast lookup of a value based on the given key.

Keys and Values

You can use any Python data type as a key as long as it is immutable. So for example strings, ints, and tuples can be keys,
but not lists or other dictionaries.

Any object can be a value in a dictionary.

A dictionary literal is defined with curly braces {} like so:

Create a new dictionary
choice = {'yes': True, 'no': False}

Lookup the values mapped to 'yes' and 'no'
choice['yes'] # True
choice['no'] # False

As with lists, items can be added and retrieved using square brackets [key].

Start with an empty dictionary
d = {}

Add an item
d['zero'] = 0 # {'zero': 0}
d['one'] = 1 # {'zero': 0, 'one', 1}

Lookup a value
val = d['zero'] # 0
val = d['six'] # Raises KeyError since key is not in d!

More ways dictionaries can be modified and accessed

Consult Python dictionary docs (below) for full details!

Create new dict from a list of (key, value) tuples
d = dict([('one', 1), ('two', 2), ('three', 3)]) # {'one': 1, 'two': 2, 'three': 3}

Return the value for key if key is in the dictionary, else default.
d.get(key [, default]) # if default is omitted this returns None when lookup fails.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 8 of 58

Remove an item. Raises KeyError if key is not in the dict.
del d['two'] # {'one': 1, 'three': 3}

Remove an item and return its value (if key isn't in d, return default)
val = d.pop(key [, default])

len(d) # Return number of items in d
key in d # Return True if d has key

Iterators to use with for loops, etc.
d.items() # Iterator of (key, value) tuples
d.keys() # Iterator of keys
d.values() # Iterator of values

Dictionary: https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Escape Sequences
Special Characters

In many programming languages, a character preceeded by a backslash is known as an escape sequence.

Escape sequences allow you to use illegal or special characters in a string.

Saving strings!

For example, the string 'You're the best!' is invalid.

Since we're using single quotes to denote a string, an apostrophe in the string will break our syntax!

However, our string can be saved with an escape sequence! 'You\'re the best!'!

Newlines!

Another escape sequence is the newline!

In a suprising twist, it creates... a new line!

print("Here is one line, and it's above...\n\nThis line!!!")

Output:
Here is one line, and it's above...
#
This line!!!

print("Here is one line, and it's above...\n\n\tThis line!!!")

Output:
Here is one line
#
This line is indented!!!

Example Escape Sequences:

\\ Backslash
\' Single Quote
\" Double Quote
\n New Line
\t Horizontal Tab

See also: strings

Escape Sequences: https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-python-grammar-
stringescapeseq

DICTIONARY - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 9 of 58

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-python-grammar-stringescapeseq
https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-python-grammar-stringescapeseq

Exception
Python Exceptions

Python exceptions can happen due to errors in your code.

Your program execution will stop when an exception occurs unless there is a try block to catch the error.

There are many different types of exceptions.

Some of the most common are:
TypeError - You tried to use an improper type in a function.
ValueError - Generally when a value supplied is out of range for a function.
NameError - You tried to reference a variable that doesn't exist.
KeyError - You tried to reference a key in a dict that doesn't exist.

You can even create your own exceptions by inheriting from the base Exception!

raise is a keyword that lets you manually create an exception.

This can be done when you detect an "error" OR as another means of control flow for your program.

Some other keywords that are used for exception handling include:

Block Optional Description
try False Stops as soon as an exception is raised!

except False Runs if an exception occured in the try.
else True Runs if there was no exception in the try.

finally True Runs after all other blocks no matter what.

Here is an example of exception handling:

try:
 raise Exception('Go to the except block!')
 print('Never made it here!')
except:
 print('An exception happened!')
else:
 print('Never got here because there was an exception!')
finally:
 print('Always finish with a finally!')

Exceptions: https://docs.python.org/3/tutorial/errors.html#exceptions

Files
File Operations

Open

Files in your filesystem can be programmatically accessed through the file object:

Create a new file object
f = open(filename, mode)

Parameter mode determines which set of operatons you can perform on the file object.

Mode Description
r Read only mode only allows you to read data.

ESCAPE SEQUENCES - PYTHON

EXCEPTIONS - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 10 of 58

https://docs.python.org/3/tutorial/errors.html#exceptions

Mode Description
r+ Opens file for both reading and writing.
rb Read only mode for binary data.
w Write only mode creates a new file, or overwrites an existing one.

w+ Opens file for both reading and writing but overwrites existing file.
wb Write only mode for binary data.
a Append mode lets you start writing to the end of an existing file, or creates one if it doesn't exist.
x Opens a file for write only if it doesn't already exist.

Iterating Lines of a File

The returned file object f is also an iterator when in a readable mode.

Each iteration returns a line sequentially!

Ex:

f = open('testfile.txt', 'r')
for line in f:
 # On first iteration print line 1, second line 2, etc...
 print(line)

f.close()

Close

f.close() closes an opened file.

It's good practice to close an opened file when your program is finished using it.

This ensures the file contents are written and allows others to use the file.

The with statement - Context Manager

Closing a file is an example of a "cleanup" task. It's easy to forget this step, or accidentally skip over it by returning from a function
or due to an exception.

For such cases Python comes to the rescue again! The with statement makes sure that the enter and exit actions are completed for
a suitably equipped object. And the file object is so equipped - it will close() when the with block is exited.

Check out this rewrite of the above example. Much nicer using with, and the close() happens automatically!

with open('testfile.txt', 'r') as f:
 for line in f:
 # On first iteration print line 1, second line 2, etc...
 print(line)

Read

f.read(n) returns a string with the specific number of characters n from the file.

When n is not speficied or is negative, the entire file is read and returned.

Readlines

f.readlines() returns a list containing a string for each line of the file.

Readline

f.readline() returns the next line from the file as a string.

Write

f.write(bytes) will write text or byte object bytes to the file.

Write will behave differently depending on the mode the file was opened with.

If mode is 'a', the text will be appended to the end of the file.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 11 of 58

If mode is 'w', the inserted text will overwrite any existing content.

Writelines

f.writelines(list) will write a list of items to lines of a file.

Similarly to write, the functionality of writelines changes depending on the mode

If mode is 'a', the list items will be appended to the end of the file.

If mode is 'w', the inserted list items will overwrite any existing content.

Flush

f.flush() ensures the file contents are saved to the filesystem.

flush happens automatically when you f.close(), but there may be times you want to keep a file open while still saving the
contents to the filesystem.

open(): https://docs.python.org/3/library/functions.html#open

IO Module: https://docs.python.org/3/library/io.html

os.path: https://docs.python.org/3/library/os.path.html

os: https://docs.python.org/3/library/os.html#file-object-creation

float
Floating point number type

A float is a real number with a decimal point. It can hold a fraction, like:

PI = 3.14
body_temp = 98.6

In Python, you can convert an integer or string to a float with float()

Examples:

float(7) # Returns 7.0

float("2.71828") # Returns 2.71828

Numeric Types: https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Functions
Reusable chunks of code

A function is a named chunk of code you can run anytime just by calling its name!

In other programming languages functions are sometimes called procedures. Functions can also be bundled with objects, where
they're referred to as methods. Whatever you call them, they are a good way to package up useful sections of code you can use
over and over again!

In Python you can define a new function like this:

OPEN() - PYTHONIO MODULE - PYTHONOS.PATH - PYTHONOS - PYTHON OS - MICROPYTHON

NUMERIC TYPES - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 12 of 58

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/io.html
https://docs.python.org/3/library/os.path.html
https://docs.python.org/3/library/os.html#file-object-creation
https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

def flashLEDs():
 leds.user(0b11111111)
 sleep(0.5)
 leds.user(0b00000000)
 sleep(0.5)

Once that's defined, you can call the function whenever you like:

while True:
 flashLEDs()

Parameters and Returns

You can also define parameters for a function, like the x below. And the return statement lets the function give a result back to
the caller.

def addTen(x):
 return x + 10

result = addTen(2)
Now result is 12

Function Objects

Functions are "first class objects" in Python, so they can be passed around, assigned to new variable names, used as values in
lists or dictionaries, etc.

The name you use when you define a function becomes part of the function object, and is added as a variable in the scope
where you defined it. You can assign it to a different variable name later if you like!

import
Referencing other code - library modules

import statements in Python let you use code from outside your own source file. These external sources are called modules in
Python. You will also sometimes hear modules referred to as libraries.

This is a very important feature of the language, as it lets you leverage the work of others. Example modules include botcore, time,
and random.

import statements can have different forms. Throughout this course you have written code like:

from botcore import *
import time
from random import randint

and you may have wondered at the slight differences in each statement:

Why do some of the import statments say from but others do not?
Why do some of the import statements have a * in them but other statements do not?
Why is the word import sometimes on the right side of the module name instead of the left side?

These variations in the different import statements affect two different behaviors:

How much of the module is imported
The exact naming of the features you imported

First let's talk about the "how much", using the random module as an example. The random module contains about eight functions, and
one possible way to import them all would be:

from random import getrandbits
from random import seed
from random import randint
from random import randrange
from random import choice
from random import random
from random import uniform

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 13 of 58

If you only want one or two features, specific individual imports like these are fine. However, if you want most or all of the features
from a module, you might as well import all of them, and there is a handy shortcut to do just that:

from random import * # We now have access to everything the random module can do

The * character in this context is shorthand for "everything". In computer lingo this is referred to as a wild-card. The botcore module is
an example of a module containing so many features we usually just import them all with one statement, and ignore the ones we
don't need.

This brings us to the difference between from random import * and import random. Both import statements bring in the same quantity
of features (it imports all of them). The difference is in how those features are utilized afterwards. Features imported via import random
must be referenced using what is called a fully qualified name. For example, to set the random seed you would have to type:

random.seed(123)

Features imported via from random import * can be referenced without the leading qualifier:

seed(123)

Which form of import you use is sometimes a matter of personal taste, and sometimes about avoiding naming conflicts. For example,
imagine if your program included the following code snippet:

def seed(type_of_crop, rows_to_plant, watering_interval):
 # Pretend there is more Python code here

Now imagine also wanting to use the seed() function from the random() module. This is an example where you would want to use
import random so you could do things like:

random.seed(123) # make random numbers be consistent for my testing
seed('corn', 124, 'daily') # plant the first crop

Indentation
Structuring blocks of Python

See the block of code below the while?

while True:
 leds.user(0b11111111)
 sleep(1)
 leds.user(0b00000000)
 sleep(1)

leds.user(0b11000011) # this line will never run!

The indented code is offset to the right with four spaces (TAB key). This is how the Python language organizes blocks of code.

Statements ending in a colon (:), like while condition:, always operate on the block of code indented just beneath them.

Be careful and consistent with your indentation!

Use the TAB key on the keyboard to help with this.
Make sure every line of code in a block is "lined up" properly on the left!

Note

If you've seen other programming languages, you might have noticed they have a different syntax to define blocks of code -
often {braces} are used. But with Python it's all about the indentation!

Input Function
Reading text input from the console

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 14 of 58

The input() function is a Python built-in that lets your program receive text (keyboard) input from the user.

The API for this function is:

input([prompt])

The optional argument prompt will be printed to the console, then the function will wait for the user to type in some text, followed by
the ENTER key (newline).

This function always returns a string, even if the user entered a number!

Example: Ask for the user's name, then greet them!

name = input("Enter your name: ")
print ("Hello", name, ", nice to meet you.")

In CodeSpace just open the Console menu at the lower right and be sure to click next to the text cursor so your key-presses can
be read by input().

Input function: https://docs.python.org/3/library/functions.html#input

int
Integer number type

An integer is a whole number (no fractions) that can be positive, negative, or even zero.

You define an int using a number without a decimal point.

num_trombones = 76

In Python, you can convert a decimal number or string to an integer with int()

Examples:

int(7.9) # Returns 7

int("25") # Returns 25

Notice that int() does not round up. It just chops off the fractional part!

Binary and Hexadecimal too!

By default when you write an integer literal Python interprets it as a decimal (base-10) number. But you can also define an integer in
binary (base-2) or hex (base-16) by using prefixes 0b or 0x as shown below:

Set value to 12 (that's 1100 in binary)
value = 0b1100

Set value to 12 (that's 0C in hexadecimal)
value = 0x0C

The above statements produce exactly the same result as:

Set value to 12
value = 12

Numeric Types: https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

INPUT FUNCTION - PYTHON

NUMERIC TYPES - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 15 of 58

https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Iterable
An object capable of returning its members one at a time.

When you move through a sequence like a list or a tuple one item at a time, that's called iterating.

Python data types like lists and tuples are said to be iterable.

The for loop is made to iterate over a sequence. This can be one of the sequence types like lists or tuples, but can also be any
object that implements the iterable interface, such as strings.

A common example is the range object. It represents a range of integers, and implements the required functions (methods) to
allow code such as for loops to iterate over it.

Iterable: https://docs.python.org/3/glossary.html#term-iterable

Keyword and Positional Arguments
Passing data to functions with style

When you call a function the default way that arguments work is based on their position in the list when the function is called.

These are called "Positional Arguments"

You can also specify your arguments by name when you call a function.

These are called "Keyword Arguments".

A test function
def func(foo, baz):
 print(foo, baz)

All of these function calls display "0 1" on the Console
func(0, 1) # Call func with positional arguments
func(foo=0, baz=1) # Call func with keyword arguments
func(0, baz=1) # Mix positional and keyword arguments
func(baz=1, foo=0) # Change the order.

ERROR! No positional arguments after a keyword argument
func(foo=0, 1)

A similar looking but different concept is default parameters.

Function Parameters: https://docs.python.org/3/glossary.html#term-parameter

list
List type

A list is a sequence of items that you can access with an index.

Define a list of 3 color strings
colors = ["Red", "Green", "Blue"]

colors[0] # "Red"
colors[1] # "Green"
colors[2] # "Blue"

ITERABLE - PYTHON

FUNCTION PARAMETERS - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 16 of 58

https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/glossary.html#term-parameter

len(colors) # 3

Use square brackets [] to define a list, and to index an item.

Notice: The first item in a list is at index = 0 !

Lists can be modified:

Here are a few ways. Consult Python sequence docs (below) for more!

Replace an item:
colors[1] = "Orange" # New colors == ["Red", "Orange", "Blue"]

Delete an item:
del colors[1] # New colors == ["Red", "Blue"]

Append an item:
colors.append("Yellow") # New colors == ["Red", "Blue", "Yellow"]

Insert an item at index i: insert(i, new_item)
colors.insert(0, "Black") # New colors == ["Black", Red", "Blue", "Yellow"]

More list features:

There are a lot more capabilities of sequence types like lists. Below are a few that you might find useful:

Example list
seq = [100, 101, 102, 103]

seq[i:j] # slice of seq from index i up to but not including j
seq[1:3] # [101, 102]

len(seq) # (4) Number of items in list
min(seq) # (100) Smallest item
max(seq) # (103) Largest item

101 in seq # (True) True if an item of seq is equal to 101

Make a copy of seq
new_seq = seq.copy()

Also see list comprehension for a compact way to create lists.

The list is a Mutable Sequence (items can be changed) so it has all the Common Sequence plus the Mutable Sequence operations
described in the Python docs link below. Check out tuples for an immutable alternative to lists!

Sequences: https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

List Comprehension
Compact and powerful way to build lists

It is common to create a new list with a loop that starts with an empty list and appends items like so:

even_numbers = []
for x in range(5):
 even_numbers.append(x * 2)

print(even_numbers) # Displays: [0, 2, 4, 6, 8]

Python provides a concise way to do the same thing, called a list comprehension.

even_numbers = [x * 2 for x in range(5)]

SEQUENCES - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 17 of 58

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

A list comprehension consists of square-brackets containing an expression followed by a for clause, and optionaly an if clause. You
can even use multiple fors and ifs - see the Python doc link below for more examples.

skip_5 = [i for i in range(10) if i != 5] # [0, 1, 2, 3, 4, 6, 7, 8, 9]

List Comprehensions: https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

Locals and Globals
Variable scope and lifetime

Variables that you define outside of a function are called global variables.

Their "lifetime" (how long they retain value) is the whole time the program is running,
and their "scope" (where they can be seen/used by code) is the whole file. That's
global, dude!

The other kind of variable is local. Variables created inside functions are local.

They only exist while the function is running, then they go away. That's local scope.

What if I want to change a global variable from inside a function?

You have to declare it in the function with the global keyword, like:

count = 0

def check_buttons():
 global count # <--------- Tells Python to use the GLOBAL
 # variable, not to make a LOCAL one.
 if button_b.was_pressed():
 count = count + 1
 return str(count)

Now when you assign to count, you're assigning to the global one rather than creating a new local one.

Note:

Variables that are referenced inside a function but not assigned a value within it are assumed to be global. So your code can
access any global variable it can see! Only when you need to change the variable is a global declaration required.

Logical Operators
and, or, not

You've seen how branching and loops control the flow of your program with True / False decision points such as:

Comparison operations like x > 51 (which are also True or False)
Functions like button_a.is_pressed() that return True or False,

What if you have multiple conditions to compare - like two buttons, testing if either one or the other or both is True?

if buttons.is_pressed(0) or buttons.is_pressed(1):
 print("A button was pressed!")

Python provides the following logical operators to handle combinations of Boolean results:

and
or
not

LIST COMPREHENSIONS - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 18 of 58

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

not is a special kind of logical operator that is only used in its unary operator form.

Wait for BTN-0 to be pressed
while not buttons.was_pressed(0):
 pass # Do nothing while waiting.

Check out a review of basic logic operations to better understand the use of these operators.

Read about other Operators too!

Boolean operations: https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not

Loops
Repeating sections of code

Ever feel like you're going in circles?

While people don't generally like to do the same thing over and over again, computers are really great at it!

Loops let you change the flow of your code so it repeats a block of code again, subject to a condition
you give.

while loop

The while condition: statement repeats the indented block of code as long as condition is True.

Example:

This code displays the numbers 0 through 4

i = 0
while i < 5:
 print(i)
 i = i + 1

Breaking Out?

What if you want to break out of a loop before the condition is True?

...or jump back to the condition check without completing the whole block?
You can! Check out break and continue for more on that.

for loop

Python's other type of loop is the for loop. Combined with the range iterator it provides a more compact way to achieve the
"counting" while loop above:

for i in range(5):
 print i

In general the for element in iterable: statement repeats the indented block of code once for each element of the iterable
(range, string, list, etc.) you provide.

Examples:

This code counts the number of 's' characters in a string.

text = "This is a test"
count = 0
for letter in text:
 if letter == 's':
 count = count + 1

print(count)

BOOLEAN OPERATIONS - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 19 of 58

https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not

This code displays the numbers 0 through 4

for i in range(5):
 print(i)

Target List (unpacking)

An additional feature of for loops comes from assignment unpacking. If you are iterating over a nested sequence, as in the
following example, the form: for target_list in iterable: provides a convenient syntax:

tune = [('C', 4), ('D', 2), ('D', 2), ('A', 4)] # note, duration
for note, duration in tune: # Unpack as you iterate!
 play(note)
 sleep(duration)

while and for: https://docs.python.org/3/reference/compound_stmts.html#the-while-statement

Math Operators
Math operators, precedence, and math Built-ins

Python has features for doing basic mathematical operations built-in to the language!

In addition, there are many more math features in the standard math module.

An example of an operator is the symbol * for multiplication.

a = 5
b = 2
product = a * b # multiplication operator

But if you invite another operator to the party, you have to worry about precedence.

product = 100 + a * b # Hmmm... 210 or 110?

Consulting the table below, you find that * is higher precedence than +.

So multiplication binds first, then addition. (product is 110)
Consider using parenthesis to improve readability in code like this.

Notice which operator in the table has the highest precedence!

Operator Precedence Table

The table below lists common Python operators in order from lowest to highest precedence.

Operators toward the top are lower precedence (least binding).
Operators in the same box have the same precedence.

Operator Description
if - else Conditional Expression
or Boolean OR
and Boolean AND
not x Boolean NOT
<, <=, >, >=, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Bitwise Shifts
+, - Addition and subtraction
*, /, %, // Multiplication, division, remainder, Integer division
+x, -x, ~x Positive, negative, bitwise NOT
** Exponentiation (power)

WHILE AND FOR - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 20 of 58

https://docs.python.org/3/reference/compound_stmts.html#the-while-statement

Operator Description
x[i], x(args) Subscript, function call
(expressions,...) Parenthesis

Operator Precedence: https://docs.python.org/3/reference/expressions.html#operator-precedence

Built-in Math Functions

Python has a number of built-in functions that are available to your code with no module import needed. Below are some of the
math oriented ones:

abs(x) # Return absolute value of x.
divmod(a, b) # Divide a/b, return (quotient, remainder).
max(arg1, arg2,...) # Return maximum value of given arguments.
min(arg1, arg2,...) # Return minimum value of given arguments.
round(x [, ndigits]) # Return x rounded to ndigits precision
 # after the decimal point.

None
The Null Object

None means "no value." It is a special object with type NoneType, and it is the value returned by functions which have no return
statement.

None is a falsy value, and it is often used to initialize variables prior to their being assigned values of a working type.

None: https://docs.python.org/3/library/stdtypes.html#the-null-object

Parameters, Arguments, and Returns
Getting things in and out of functions

Functions are a two-way street!

You can pass arguments IN to a function when you call it.
Send arguments to a function inside parenthesis.

When it finishes, it can return things OUT - back to your code that called it.
A function can use the return statement to send a value back to the caller.
The return statement ends the function.
Your code substitutes the return value for the call().
If a function has no return statement, it returns None by default.

Here's a simple function that calculates the square of the number that's passed to it:

def square(n):
 return n * n

Now we can call this function whenever we need it:

area = square(5)

...In this case, area will be 25.

The return statement:

OPERATOR PRECEDENCE - PYTHON

NONE - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 21 of 58

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/library/stdtypes.html#the-null-object

Exits the function
Replaces the calling statement with the returned value

Key Terminology

When you define a new function, you can declare a list of names in parenthesis.

These are called parameters
Inside the function, they act like local variables

When you call a function, you can pass it a list of values in parenthesis.

These are called arguments
They are used to initialize the parameter values.

Learn more about Positional arguments and Keyword arguments

Print Function
Printing text messages to the console

The print() function is a Python built-in that lets your program display text messages to the user. You pass it a series of
positional arguments, and they are converted to strings and printed on the local console interface.

Objects are automatically converted to strings just like the str() function does.
A single space is printed to separate each object printed.
A newline (\n) is printed at the end of the print.

You can change the formating of separate and end with the sep and end keyword arguments

print("lute", "bar", sep='+', end='d') # Prints "lute+bard"

Fancier Formatting

For more control over your text display, check out Python's string formatting features.

Getting to the Console

In CodeSpace just open the Console panel at the lower right to see print() output. This is also where you can interact with the
REPL.

Print function: https://docs.python.org/3/library/functions.html#print

Punctuation
Symbols used in coding

Strange looking punctuation can take some getting used to when you first start coding!

For example, these two lines simply display a HEART image, but look at the asterisk, dots, and parentheses - oh my!

from codex import *
display.show(pics.HEART)

Well, all this punctuation has a purpose.

We are using the codex module - pre-loaded code that makes it easier to do things with the CodeX.
The * means "import everything" from that module (it's called a wildcard).
The codex module provides the display and pics objects.
When we type: display.show we are using the show property of the display object.

PRINT FUNCTION - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 22 of 58

https://docs.python.org/3/library/functions.html#print

The . dot is a way of accessing part of the display object.
The parentheses () tell the computer to run a particular piece of code, optionally passing it some data (inside the
parentheses).

So, display.show(pics.HEART) means

Run the display object's show code, passing it the pics.HEART data.

Ranges
Sequences of numbers you can iterate over

The built-in range(start, stop, [step]) provides an iterable object when your code needs a sequence of integers.

At minimum, you have to provide the stop argument. If you call range(n) with only a single argument, it is assumed to be the stop
value, with start=0 and step=1.

Note: the range goes up to, but not including stop.

seq = range(5) # seq is (0, 1, 2, 3, 4)

You can also include both start and stop arguments:

seq = range(2, 5) # seq is (2, 3, 4)

Finally, you can add the step argument:

seq = range(1, 10, 2) # seq is (1, 3, 5, 7, 9)

Want to count backwards?

Just use a negative value for step.

Range: https://docs.python.org/3/library/stdtypes.html#ranges

str
String type

A string is a sequence of characters, like words or sentences.

name = "Firia"
occupation = "Teaching Robot"

Notice that you surround characters in " quotes to create strings.

Actually, you can use single or double quotes:

name = 'Firia'

Use different types of quote-marks to enclose quotations:
salutation = 'Just call me "Firia" if you like.'

You can convert other types to string with str()

Examples:

str(7) # Returns "7"

RANGE - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 23 of 58

https://docs.python.org/3/library/stdtypes.html#ranges

More string features:

There are a lot more capabilities of string types. Below are a few that you might find useful:

Example string
text = "This is a test"

text[i] # Return a single-character at position 'i' in the string
 # Ex: text[0] is 'T', and text[1] is 'h'

text[i:j] # slice of string from index i up to but not including j
 # Ex: text[1:3] is "hi"

text[i:] # slice of string from index i to end of string.
 # Ex: text[5:] is "is a test"

text[:j] # slice of string from 0 up to but not including j.
 # Ex: text[:4] is "This"

len(text) # (14) Number of characters in string

text = text + "er" # Append another string
 # Now text is "This is a tester"

text.split() # Return a list of "words" from the string (separated by spaces)

text.split(',') # Return a list of comma-separated "words" from the string

Convert between the ASCII value (ord) and Character symbol (chr) of a 1-char string
ord('A') # 65
chr(65) # 'A'

See Character Encoding for more details on ord() and chr()

There's much more to learn about strings - for example, you can insert special characters in your strings by using
Escape Sequences which begin with the backslash \ character.

Escape Sequences:

Escape Sequence Meaning
\newline Backslash and newline ignored
\\ Backslash (\)
\' Single quote (')
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Tab (TAB)
\v ASCII Vertical Tab (VT)
\oNN Character with octal value NN
\xNN Character with hex value NN

String: https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

Escape Sequences: https://docs.python.org/3/reference/lexical_analysis.html#literals

String Formatting
Making strings presentable

Often you have some data that needs to be converted to a string.

STRING - PYTHONESCAPE SEQUENCES - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 24 of 58

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/reference/lexical_analysis.html#literals

Maybe you're going to print() it to the console, or write it to a file.

The print function has some formatting capability: passing multiple arguments combined with the sep and end parameters. But
this can be cumbersome, and doesn't handle things like making decimal numbers print in neat columns.

Format Strings

You can define a string to serve as a "template" for the string you want to create. This is called a format string. Within the format
string you can put replacement fields, designated by curly braces { }.

Example:

speed = 25
dist_units = "centimeters"
time_units = "second"
format_str = "Current speed is {} {} per {}."

Use the format() string method to insert actual arguments into format_str
display_str = format_str.format(speed, dist_units, time_units)

display_str is now: "Current speed is 25 centimeters per second."

Replacement Fields {}

In the example above the replacement fields were empty. In that case the format() method maps its arguments into the format string
in the order that they appear. format() can also map keyword arguments to names placed inside the replacement fields like so:

output = "Sensor number {s_num} is reading {s_val} degrees.".format(s_val=8.287, s_num=101)
output is now: "Sensor number 101 is reading 8.287 degrees."

If you prefer positional arguments you can use an integer inside the replacement fields to indicate the order of the format()
argument to substitute. For example: "{0} plus {0} equals {1}".format(2, 4) # "2 plus 2 equals 4"

More details about mapping arguments to replacement fields can be found here:

Replacement Fields: https://docs.python.org/3/library/string.html#format-string-syntax

Format Specifiers - making the format juuuuust right!

When you have numbers to display, you can format them exactly the way you want to!

Inside the replacement field you can add a colon then a format specifier.

Format sensor value: fill with zero's, total width 4 chars, precision 1 decimal place.
output = "Sensor number {s_num} is reading {s_val:04.1f} degrees.".format(s_val=8.287, s_num=101)
output is now: "Sensor number 101 is reading 08.3 degrees."

In the above example the format specifier gives a leading zero, overall width of 4 characters, precision of 1 digit after the decimal
point, with a type of float.

.1s_val: 0 4 f

leading zero
width=4
precision=1
float

The general form of a format specifier is:

[[fill] align] [sign][#] [0] [width] [grouping_option] [.precision] [type]

(Note: Everything in brackets[] is optional... which is everything!)

Format Specifiers: https://docs.python.org/3/library/string.html#format-specification-mini-language

REPLACEMENT FIELDS - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 25 of 58

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#format-specification-mini-language

f-strings

Huh? Naw, I'm talking about formatted strings y'all!

Python provides an even more convenient syntax for string formatting:

temp = 67.3253
display_str = f"Temperature is {temp:.1f} degrees"
display_str is now: "Temperature is 67.3 degrees"

Notice the letter 'f' before the quotes? That's an "f-string", and it supports replacement fields directly, without the need to call the
.format() function.

f-strings: https://docs.python.org/3/reference/lexical_analysis.html#f-strings

format() built-in: https://docs.python.org/3/library/stdtypes.html#str.format

tuple
Tuple type

A tuple is an immutable sequence of items that you can access with an index.

The word immutable just means the contents can't be changed.
Think of it as a read-only version of a list.

Define tuples of (left_speed, right_speed)
forward = (50, 50)
reverse = (-50,-50)
rotate_right = (35, -35)
rotate_left = (-35, 35)

Move forward
motors.run(LEFT, forward[0])
motors.run(RIGHT, forward[1])

Use parenthesis () to define a tuple.
Use square brackets [] to index an item.

Note: The first item in a tuple is at index = 0 !

More tuple features:

Tuples support the common capabilities of sequence types, like:

Example tuple
seq = (100, 101, 102, 103)

seq[i:j] # slice of seq from index i up to but not including j
seq[1:3] # (101, 102)

len(seq) # (4) Number of items in list
min(seq) # (100) Smallest item
max(seq) # (103) Largest item

101 in seq # (True) True if an item of seq is equal to 101

Sequences: https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

FORMAT SPECIFIERS - PYTHON

F-STRINGS - PYTHONFORMAT() BUILT-IN - PYTHON

SEQUENCES - PYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 26 of 58

https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Unary and Binary Operators
Unary and Binary operators in Python

Operators are keywords and symbols you use to write expressions in code. You already know a lot of operators from math, for
example:

2 + 2

The plus sign (+) above is the addition operator. The numbers on either side are its "operands".

Unary operators only require one operand. (like a unicycle has just one wheel!)

Here the '-' symbol is a unary operator: x = -1

Binary operators require two operands to work. (Note: the term "binary" just means "two" in this case. We aren't talking base-2
arithmetic here!)

Here the '-' symbol is a binary operator: x = x - 1

In the example below, the '-' operator (unary) is applied before the addition '+' operator (binary).

Ex. x = -1 + 2

The order that operators are applied follows the precedence rules.

Some operators can be both unary and binary operators.

For instance, the '-' sign can be used to negate a value (unary) or subtract two values (binary).

The not logical operator in Python can only be applied in a unary form.

In Python there are only a few unary operators:

Operator Description
- Changes the sign of the value
+ Numeric value is unchanged
~ Bitwise inversion of value
not Boolean NOT of value

Underscore
Making names more readable

A common way to make descriptive names in code is to join words with underscore.

On your keyboard, hold down SHIFT and press the dash '-' key.

You'll get used to joining words together like this to make your own unique and meaningful names where needed in your code.

Variables
Making up names for things

You might think of variables as boxes with labels on them, that you can put stuff in. That stuff might be numbers, text, an Image,...
pretty much any of the objects your code needs to work with!

Ex: Store the number 73 in a new variable called my_favorite_number

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 27 of 58

my_favorite_number = 73

Now you can use the variable name instead of the number. And if you decide to
change my_favorite_number to something different, you can change it as often as you
like! The variable lets you store and retrieve data to and from the computer's
memory.

Naming

Variable names in Python have to follow certain rules:

Must begin with a letter or _ , not a number
Can contain letters, numbers, and _

...but what size is the Box?

In some programming languages, defining a variable creates space in memory, and
you have to specify what data type a variable will hold to be sure there's room.
That's very box-like.

But in Python, a variable is really more like a sticky-note with a name written
on it.
Objects like integers and strings can exist without a name, or they can
have multiple names stuck to them!
See assignment for more details about that!

Python Libraries
Math Module
A scientific calculator for your code

Sometimes your coding challenges require a little mathematics.

Python's math module includes a set of mathematical functions and constants.

Trigonometric operations
Logarithms and exponents
...and more!

import math

Show off some 'math' module features.
print("pi = ", math.pi)
print("base of the natural logarithm: e = ", math.e)
print("sin(pi/2) = ", math.sin(math.pi / 2))

math: https://docs.python.org/3/library/math.html#module-math

Random Numbers
Making code unpredictable

Normally a computer can be relied on to be very predictable.

Each time you run a program it goes through the same sequence, starting from the first line of code and taking one predictable step
at a time.

But some applications need randomness, or unpredictable results:

MATH - PYTHON MATH - MICROPYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 28 of 58

https://docs.python.org/3/library/math.html#module-math

Games, where there shouldn't be an obvious pattern for the human player to learn.
Cryptography, where randomness helps secure stored passwords and messages.
Scientific studies, where statistical sampling requires random selection.

On some devices there is a hardware-based "true random number generator" available. When that is not present, Python uses a
pseudo random number generator, which means the "random" numbers it provides are really just a fixed sequence that's meant to
have an unpredictable pattern.

To use these functions, they must first be imported from the random module:

import random

If you want to set the starting point in that pseudo-random sequence, use the function random.seed():

Seed the random number generator
random.seed(1234)

After seeding the random number generator, the following code will always start at the same point in the sequence of "random"
numbers.

To generate a random number, use randrange or one of the other awesome functions in the random module:

Returns a random integer from 0-9
random.randrange(10)

You can also specify start and stop for the range: [start, stop)
random.randrange(start, stop)

Return the next random floating point number in the range [0.0, 1.0)
random.random()

Got a list of items to choose from?
Return a random item from the given sequence.
random.choice(my_sequence)

random: https://docs.python.org/3/library/random.html#module-random

Time Module
Waiting, measuring, and watching the clock tick by.

Python's time module provides various time-related functions.

Note that many embedded systems like CodeBot and CodeX don't have a "Real Time Clock" enabled,
so some of the functions dealing with "time of day" are not available.

Full implementations of the time module have many more features than the MicroPython version.
See the links below for details.

For your embedded MicroPython applications, the most useful time functions are:

Waiting for specified delays with sleep_XX() functions.
These functions block - that is, they don't return until the specified delay has elapsed.

Checking the current elapsed time with time.time() or ticks_XX() functions.
These functions return immediately with the current elapsed time count.

Note:

The time.time() function is standard Python, available on all platforms. It returns a running count of seconds.
For systems that have access to a "Real Time Clock" the value is the number of seconds since "the Epoch" January 1,
1970.

The ticks() functions in MicroPython are very useful for marking the passage of time in embedded code.
These counters start at zero when your device boots, and keep counting up from there while it's running.
BUT they can't keep counting to infinity! At some point the counters will wrap-around back to zero.
If you're doing calculations based on ticks your code needs to account for that! That's where ticks_add() and ticks_diff()
come in handy.

RANDOM - PYTHON RANDOM - MICROPYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 29 of 58

https://docs.python.org/3/library/random.html#module-random

import time

Delay functions: block program execution for specified time interval.
time.sleep(seconds)
time.sleep_ms(milliseconds)
time.sleep_us(microseconds)

Counter functions: return instantaneous time counts.
time.ticks_ms() # millisecond counter
time.ticks_us() # microsecond counter

Math that compensates for ticks "wrap-around-to-zero"
time.ticks_add(ticks, delta) # returns (ticks + delta)
time.ticks_diff(ticks1, ticks2) # returns (ticks1 - ticks2)

time: https://docs.python.org/3/library/time.html

Timing
Controlling the pace of actions

Usually a computer program runs as fast as it can, but sometimes you want to slow things down. To use delay functions, they must
first be imported from a Python module:

from time import sleep

The function sleep() should only be used when there is no code you want to run during the pause. However, peripherals like the
LEDs and LCD Display will continue to operate while your program "sleeps".

Functions like this are referred to as blocking functions, and calling sleep() directly is an example of a blocking delay.

Sleep for the given number of seconds
sleep(sec)

As an example of how sleep() can be used to control the pacing of your program:

Dramatic build up...
display.print("3")
sleep(1.0)
display.print("2")
sleep(1.0)
display.print("1")
sleep(1.0)
Do something impressive here...

CodeBot Libraries
Accelerometer
Sensing orientation and impact.

Just like a game controller or phone that can sense tilting or shaking, this sensor chip lets the robot detect motion, impacts, and
orientation.

An accelerometer is a device that measures proper acceleration. One way you commonly experience acceleration is when you're
moving and your speed or direction of motion changes. Think of speeding up in a car, the force you feel pushing you back in your
seat or sideways when going through a turn. The forces you're feeling are due to acceleration.

So if you're standing still, acceleration is zero, right?

TIME - PYTHON TIME - MICROPYTHON

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 30 of 58

https://docs.python.org/3/library/time.html

No! Well, not unless you're floating in space!

Gravity also causes acceleration. So even if your accelerometer is sitting still on your desk, it will measure an acceleration due to the
force of gravity pulling straight down toward the floor.

In a zero-g environment, like outer space, or if an object is in free-fall, the accelerometer will measure zero acceleration in all
directions.

CodeBot and CodeX have an accelerometer that measures the force of acceleration in 3-directions:

In the picture below, if CodeBot's circuit board is sitting horizontally and motionless on Earth, it will measure gravitational
acceleration (-1g) in the Z direction, but zero in the X and Y directions.

botcore Accelerometer docs: https://docs.firialabs.com/codebot/kxtj3.html

codex Accelerometer docs: https://docs.firialabs.com/codex/lis2dh.html

Buttons
User interface push buttons 0 and 1

There are two momentary push buttons you can read from your Python code.

The buttons are labeled like bits of a binary number, 0 and 1.

The botcore library provides functions to read buttons:

Your code can check the current state of the buttons with the buttons.is_pressed(n) function.
The library also monitors button presses so your code can check if a button buttons.was_pressed(n) since
the last time you checked.

The parameter n is 0 for BTN-0 and 1 for BTN-1.

botcore Button docs: https://docs.firialabs.com/codebot/botcore.html#botcore.Buttons

CodeBot LEDs
Lighting up CodeBot

Line Sensors
Detecting lines and boundaries beneath your 'bot

Under CodeBot's front edge are 5 line sensors. These little black boxes are known as photo reflective sensors.

BOTCORE ACCELEROMETER DOCSCODEX ACCELEROMETER DOCS

BOTCORE BUTTON DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 31 of 58

https://docs.firialabs.com/codebot/kxtj3.html
https://docs.firialabs.com/codex/lis2dh.html
https://docs.firialabs.com/codebot/botcore.html#botcore.Buttons

They have an infrared LED that emits light, and
A phototransistor that detects light.

Can you see the two sections in each of these sensors?

Your Python code can use these sensors to detect how much light is reflected by the
surface your 'bot is on. This gives CodeBot the ability to follow lines, detect boundaries, and
more!

Example API usage:

Read a single line sensor
val = ls.read(2) # Returns analog reading of sensor 2

Read all line sensors
thresh = 2500 # Threshold between 'line' and 'ground' on this surface.
is_reflective = False # Black lines
vals = ls.check(thresh, is_reflective) # Returns a tuple of bools

botcore LineSensor docs: https://docs.firialabs.com/codebot/botcore.html#botcore.LineSensors

Motors
Electric motors to power your 'bots wheels

Proximity Sensors
Detecting objects with infrared light

Dual Proximity Sensors give CodeBot the ability to detect nearby objects so you can write code to:

Avoid obstacles
Pursue moving targets
Detect walls

These IR (infrared) sensors can also be used to wirelessly communicate between teams of CodeBots.
Let the swarm begin!

The IR emitter is like a very bright "Headlight" for CodeBot, that lights up objects in
front of it.

It emits light in the infrared spectrum, which is invisible to humans.
CodeBot uses it together with the Proximity Sensors to detect objects based
on reflected IR light.

The example code below continously reads the proximity sensors and displays the (bool, bool) results on the prox
CodeBot LEDs.

while True:
 p = prox.detect()
 leds.prox(p)

botcore Proximity docs: https://docs.firialabs.com/codebot/botcore.html#botcore.Proximity

BOTCORE LINESENSOR DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 32 of 58

https://docs.firialabs.com/codebot/botcore.html#botcore.LineSensors
https://docs.firialabs.com/codebot/botcore.html#botcore.Proximity

Speaker
Audio output for alert tones, music, and more.

CodeBot's speaker can be programmed to play simple audio frequency pitches, or controlled in much
more sophisticated ways through onboard Digital to Analog Converter (DAC) or Pulse Width Modulation
hardware.

I'm a real speaker - not a "buzzer"!

Your code sends electric current through the Coil causing the Diaphram to move, which vibrates the air to
produce sound!

Just like headphones or loudspeakers in a sound system!

The example code below plays a "2-tone beep":

from botcore import spkr
from time import sleep
spkr.pitch(500) # Start playing 500 Hz tone.
sleep(0.1)
spkr.pitch(1000) # Change to 1000 Hz tone.
sleep(0.1)
spkr.off() # Stop playing sound.

botcore Speaker docs: https://docs.firialabs.com/codebot/botcore.html#botcore.Speaker

System Status Monitors
CodeBot system sensors and status reporting

Robots need to be aware of their internal environment, in addition to having sensors for external stuff!

CodeBot has sensors for:

CPU Temperature (temp_C() and temp_F() functions)
Power supply input voltage
Power switch position (USB / Battery)

Example: A function that lights the BATT LED when the battery is low.

def check_batt():
 if not system.pwr_is_usb():
 # Read batt voltage under load
 leds.user(0x0f)
 v = system.pwr_volts()
 leds.user(0x00)

 # Below 25% capacity, turn on BATT LED!
 batt_low = v < 4.5
 leds.pwr(batt_low)

botcore System docs: https://docs.firialabs.com/codebot/botcore.html#botcore.System

BOTCORE PROXIMITY DOCS

BOTCORE SPEAKER DOCS

BOTCORE SYSTEM DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 33 of 58

https://docs.firialabs.com/codebot/botcore.html#botcore.Speaker
https://docs.firialabs.com/codebot/botcore.html#botcore.System

Wheel Encoders
Sensing rotation

Your code can control the power applied to the motors, but to know exactly how far the wheels have turned you'll need to sense
rotation. That's the job of the Wheel Encoders!

As the encoder disc rotates, an invisible IR (infrared) light beam passes through its slots. Your code can count the pulses of light to
see how much the wheel has rotated.

Example: Show LEFT encoder value on the Debug Console.

from botcore import *
from time import sleep

while True:
 val = enc.read(LEFT)
 print(val)
 sleep(0.5)

botcore Encoder docs: https://docs.firialabs.com/codebot/botcore.html#botcore.Encoders

CodeX Libraries
Audio
CodeX Audio Interface

CodeX has audio hardware that lets you record and play sounds and music.

Digital Audio

At the most basic level, computers deal in numbers. Binary numbers to be specific...

So how do you get sound from numbers?

CodeX Ears - the microphone

Our ears sense analog variations in sound, so this is similar to
Analog to Digital Conversion (ADC) which converts analog inputs to numbers.

If you do the ADC repeatedly, really fast, you can "sample" a sound wave as a
list of numbers.
That's how the CodeX microphone input works - it's basically an ADC!

CodeX Voice - the speaker

Sound output is just the inverse of input!
Instead of an ADC you need a DAC (Digital to Analog Converter).

Numbers go in... analog voltage levels come out.
Stream a bunch of output voltages to a speaker, and you've got sound!

CODEC - bringing it together!

BOTCORE ENCODER DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 34 of 58

https://docs.firialabs.com/codebot/botcore.html#botcore.Encoders

On the back of CodeX right next to the headphone jack is a chip called a Codec.

That chip contains an ADC to encode analog sound from the microphone into digital form.
And a DAC to decode digital sound from the CPU into analog voltages for speakers.
A device that combines a "coder/decoder" is called a Codec.

Example Audio Functions
The audio functions of the CodeX are available in the audio object from the codex module.

Try playing an MP3 file from the CodeX Sounds collection:

from codex import *
audio.set_volume(65)
audio.mp3('sounds/welcome)

Or record your voice and play it back!

from codex import *
audio.initialize()

Countdown to record
audio.mp3("sounds/three")
audio.mp3("sounds/two")
audio.mp3("sounds/one")

Speak into the microphone
buf = audio.record() # Samples for 2 seconds by default
audio.playbuf(buf) # Playback the sampled sound!

Check the audio docs link below to learn about other audio functions you can use.

The soundlib module provides a higher-level interface for sound effects and tones.

codex audio docs: https://docs.firialabs.com/codex/codec.html

Bitmap
Graphics bits - drawing images and text

A bitmap is an object that can hold a 2D image of a given width x height.

The image is stored in memory as a list of pixel RGB Color values.
In addition to providing memory for storing the image, the CodeX Bitmap object has functions for
drawing graphics and text.

The CodeX display object is a Bitmap that maps directly to the 240x240 pixel display.

The (x, y) coordinates of the display start from zero at the top-left of the screen.

A few bitmap functions - see full docs link below for more.
set_pixel(x, y, color) # Set a single pixel to specified color
get_pixel(x, y) # Get the color of the given pixel
draw_line(x1, y1, x2, y2, color) # Draw a line from (x1,y1) to (x2,y2)
draw_circle(x, y, radius, color) # Draw a circle outline
fill_circle(x, y, radius, color) # Draw a filled circle
draw_rect(x1, y1, width, height, color) # Draw a rectangle outline
fill_rect(x1, y1, width, height, color) # Draw a filled rectangle
draw_text(text, x, y, color, scale, background) # Draw text, with no wrapping or scrolling

codex Bitmap docs: https://docs.firialabs.com/codex/bitmap.html

CODEX AUDIO DOCS

CODEX BITMAP DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 35 of 58

https://docs.firialabs.com/codex/codec.html
https://docs.firialabs.com/codex/bitmap.html

CodeX Buttons
User interface push buttons

There are six momentary push buttons you can read from your Python code.

Symbol Name
BTN_U Up
BTN_D Down
BTN_L Left
BTN_R Right
BTN_A A
BTN_B B

The codex library provides functions to read buttons:

Your code can check the current state of the buttons with the
buttons.is_pressed(n) function.
The library also monitors button presses so your code can check if a
button buttons.was_pressed(n) since the last time you checked.

The parameter n is the symbol from the above table.

codex Button docs: https://docs.firialabs.com/codex/codex.html#codex.Buttons

CodeX Image Pics
CodeX picture gallery

The CodeX can show images known as Bitmaps on its LCD screen using the display functions.

To keep it simple AND allow you to create your own images using "ASCII art", these are retro 8-bit video game style pictures.
Of course the CodeX can display realistic hi-rez graphics too...

To use Images, first import the codex module:

from codex import *

Here are ALL the CodeX's pre-defined images:

pics.HEART
pics.HEART_SMALL
pics.MUSIC
pics.HAPPY
pics.SAD
pics.SURPRISED
pics.ASLEEP
pics.TARGET
pics.TSHIRT
pics.PLANE
pics.HOUSE
pics.TIARA
pics.ARROW_N
pics.ARROW_NE
pics.ARROW_E
pics.ARROW_SE
pics.ARROW_S
pics.ARROW_SW
pics.ARROW_W
pics.ARROW_NW

You can also access all the arrows in a list using:

CODEX BUTTON DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 36 of 58

https://docs.firialabs.com/codex/codex.html#codex.Buttons

pics.ALL_ARROWS

Example: Show an airplane.

from codex import *
display.show(pics.PLANE)

Check the codex docs to learn about other Bitmap functions you can use.

codex Bitmap docs: https://docs.firialabs.com/codex/bitmap.html

CodeX Sound Collection
Sample sounds

CodeX comes pre-loaded with a few sounds you can use in your programs.

These are loaded on the file system, so you can use your computer to browse for them under the "sounds/" directory on the
CodeX itself.
You can also remove them to free up space, or add new ones by booting CodeX in USB-writable mode.
Use the CodeX audio interface to play these sounds.
Or, for more advanced control, use soundlib.

Alphabetical listing

Decimal numbers 0-9, button labels, plus a few songs and surprises await you in the built-in sound collection!

CodeX Sounds sounds/...
a.mp3 eight.mp3 off.mp3 six.mp3
africa.mp3 five.mp3 okay.mp3 techstyle.mp3
b.mp3 four.mp3 on.mp3 ten.mp3
bohemia.mp3 funk.mp3 one.mp3 three.mp3
button.mp3 led.mp3 power.mp3 two.mp3
codetrek.mp3 left.mp3 right.mp3 up.mp3
codex.mp3 mic.mp3 roll.mp3 welcome.mp3
display.mp3 nine.mp3 seven.mp3 yes.mp3
down.mp3 no.mp3 shire.mp3 zero.mp3

Example: Play welcome message.

from codex import *
audio.mp3('sounds/welcome')

Display
CodeX display canvas

The CodeX display is an LCD that allows your code to display full color text and graphics.

The display will continue to show the last thing your code sent it, even after your program ends.

To use the display, import the codex module:

from codex import *

Display an image (ex: HEART)
display.show(pics.HEART)

See the CodeX Image Gallery for more built-in pics.

CODEX BITMAP DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 37 of 58

https://docs.firialabs.com/codex/bitmap.html
https://docs.firialabs.com/codex/WorkingWithFiles.html

CodeX uses a TFT-LCD designed for smart watch applications - it's capable of amazing graphics!

The Display API

There are a few Python modules your code can use to work with the display:

Bitmap - the display object has Bitmap functions for drawing text and graphics to the screen.
TFT - use the tft object (from the codex module) to control tft.brightness and tft.auto_update behavior.
Canvas - the display object is the bottom-layer or "root" Canvas, atop which you can layer other Canvas drawings.

Bitmap docs: https://docs.firialabs.com/codex/bitmap.html

TFT docs: https://docs.firialabs.com/codex/tft.html

Canvas docs: https://docs.firialabs.com/codex/canvas.html

Light Sensor
Detect visible and infrared light

The CodeX light sensor is a sensitive electronic device which is designed to accurately
measure the amount of "ambient light" falling on it. It can measure light in both the infrared and
visible wavelengths of the spectrum.

This sensor converts light intensity to a digital output signal that the CodeX CPU can read
over its I2C interface. It provides a linear response over a wide dynamic range from 0.01 lux to
64k lux.

lux is the unit of illuminance, defined as the amount of light that a candle from 1m
distance would cast on a 1m x 1m square surface.

Example for Light Sensor
from codex import *

Read raw ADC value from sensor (default max sensitivity)
val = light.read()
display.print(val) # integer: 0 - 65535

Read value in standard lux units
lux = light.read_lux(9500) # 9500 lux range
display.print(lux) # float: lux

CodeX light sensor docs: https://docs.firialabs.com/_modules/codex.html#AmbientLight

BITMAP DOCSTFT DOCSCANVAS DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 38 of 58

https://docs.firialabs.com/codex/bitmap.html
https://docs.firialabs.com/codex/tft.html
https://docs.firialabs.com/codex/canvas.html
https://docs.firialabs.com/_modules/codex.html#AmbientLight

RGB "pixel" LEDs
Addressable Multi-Color LEDs

Normal "discrete" LEDs are simple electronic components that light up one color when an electric current passes through them.

But what if you want multiple colors?
And maybe a string of LEDs that can be independently controlled by your CPU?

Smart, Addressable LEDs aka "NeoPixels"

CodeX has four of these smart LEDs.

Each of them has three LEDS: RED, GREEN, and BLUE
...plus a tiny controller chip!

The controller chip allows the CodeX CPU to send RGB information to it based on its position in a strip (0, 1,
2,...).

You can use any of the standard RGB Colors with these LEDs, or define your own!

Example usage of CodeX Pixel LEDs
from codex import *
pixels.fill(GREEN) # Set all to GREEN
pixels.off() # All pixels OFF
pixels.set(0, RED) # Set pixel 0 to RED
pixels.set([RED, GREEN, BLUE, WHITE]) # Set all 4 to different colors

CodeX pixel LED docs: https://docs.firialabs.com/codex/codex.html#codex.NEOPixels

RGB Colors
Custom blended colors

Digital Colors: (RED, GREEN, BLUE)

How do computers represent colors?

With numbers of course!
A common way is to use 3 numbers that control the amount of RED, GREEN, and BLUE in a color.

In Python you can use a list or tuple to represent an RGB color like this:

teal = (0, 255, 128)
pixels.set(0, teal)

That's how the CodeX pixel LED and bitmap colors are defined. Feel free to define your own colors!

When you do from codex import * you get the standard color definitions from the colors module.

colors module: https://docs.firialabs.com/codex/colors.html

soundlib

CODEX LIGHT SENSOR DOCS

CODEX PIXEL LED DOCS

COLORS MODULE

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 39 of 58

https://docs.firialabs.com/codex/codex.html#codex.NEOPixels
https://docs.firialabs.com/codex/colors.html

Sound effects and Tones

The soundlib module provides a high-level sound generation API.

What's up with high-level versus low-level?

At the hardware level the CodeX CPU sends audio data directly to the CODEC chip, which converts it from digital to analog
output on the speaker or headphones.
The Codec object that you access with audio from the codex module provides direct low-level sound output features.

The high-level functions in soundlib give you more capabilities to create and mix sounds before they're sent to the CODEC.

Example: MP3 running in background with start/stop control
from soundlib import *
funky = soundmaker.get_mp3('sounds/funk', play=False)
funky.play()
... do some stuff
funky.stop()

soundlib docs: https://docs.firialabs.com/codex/soundlib.html

Computer Science
Algorithm
Step-by-step instructions to achieve a goal

You might think of a math problem or a set of instructions to brew a potion when you hear the word algorithm.

Well, you are on the right track!

An algorithm is a set of step-by-step instructions.

It can be written as text, drawn as a diagram, or coded in a programming language!
Think about your algorithm before and during the process of writing code.
A good algorithm helps break the program down into logical pieces so that it can be created one step at a time.

Benefits of writing an algorithm before you start coding:

Quick to write
Simple to read and understand
Breaks hard problems down into smaller problems

An algorithm can help you divide and conquer tough concepts.

A good practice is to make some or all of your steps unique, independent functions
This can also help the readability of your code

Analog to Digital Conversion
You Live in an Analog World

From complete darkness to bright sunlight.

From the coldest glacier to the hottest desert.

"Analog" means infinite variation from dark to light, cold to hot, and so on.

But what if you want to measure something like temperature with a computer?

SOUNDLIB DOCS

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 40 of 58

https://docs.firialabs.com/codex/soundlib.html

A digital computer can't handle an infinite number of temperature levels.
So it converts analog measurements to just a few digits

For example:

The CodeX light sensor converts an analog sensor input into a number from 0 to
65,535.

Aw! Instead of infinite brightness variation, we get just 65,536 levels!?!

Why 65,536? The computer deals in binary numbers, and this sensor has a 16-bit
ADC: 216 = 65,536.

Fortunately the digital approximation of analog measurements is perfectly fine for many applications, like sensing light or temperature
with the CodeX.

Think about the online video and music performances you've seen. They all started as analog and were converted to
digital so we could process, store, and distribute them using computers and code!

API
Application Programming Interface

This is a TLA (Three Letter Abbreviation) that you will use a lot as a software developer!

The term API (Application Programming Interface) refers to the details of how your program interacts with different services it
needs.

What kind of services?

One example is Python library modules.

The API of the import time module defines the sleep(sec) function, and all the other functions it provides.
There are library APIs to access LEDs, buttons, and more.
You have already been using an API!

Other examples of APIs

Whenever two different programs communicate, the messages they send back and forth are defined by one or more APIs

For example, a web browser and a web server (site) have to agree on the API to use for web pages and other services.
There are APIs that define how program libraries interface with the OS of your computer, to do things like reading and writing
files, keyboard input, and display.

Some APIs are published as standards (like the web example above) so programs worldwide can interoperate. But there are many
more small APIs that are written by software developers every day for every purpose imaginable. As you write code and define

functions, parameters, and objects, you will be creating APIs of your own!

Basic Logic Operations
Boolean and, or, not

How can boolean values and logical operators be used to solve complex logic problems?

Basic Operations

Here's a brief description of the basic logical operators: and, or, and not, along with a truth-table for each.

The and operator returns true only if both of its operands are true. Otherwise, it returns false.
The or operator returns true if at least one of its operands is true. If both operands are false, it returns false.
The not operator inverts the truth value of its operand. If the operand is true, it returns false, and vice versa.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 41 of 58

Truth Table:

A B A and B A or B not A
T T T T F
T F F T F
F T F T T
F F F F T

In the table:

T stands for true
F stands for false

Binary Numbers
How computers deal with digits

Inside the computer, all the tiny electrical connections that store information are like the light switches
shown here.

Each connection can be ON or OFF
That's just 2 states!
The "Bi-" in "Binary" means 2, just like a "Bicycle" has 2 wheels!

Say you only have one switch, and you want to use it to show a number to someone.

One switch can show one binary digit.
So you can show 2 possible numbers: 0 (off), or 1 (on)

(This is why it's called a DIGITAL computer!)

What if you have 2 switches?

There are 4 combinations!
Each switch is like a binary digit

It's called a bit for short :-)

Look at the switches to the right. See how all 4 combinations are used to make the
numbers 0 through 3?

It's like a secret code!
How big a number could you show with 8 switches? 10 switches? See below...

The powers of 2

Binary means "base 2", so here's how you calculate the numbers you can make with a
given set of switches (bits):

1 bit → 21 = 2 numbers
2 bits → 22 = 4 numbers
8 bits → 28 = 256 numbers
10 bits → 210 = 1024 numbers

You might have heard of a byte. That's just another name for an 8-bit number!

Binary in Python

Usually your code deals with numbers in decimal, even though the computer stores them
internally in binary form. But Python does have a way to write integer values directly in
binary by prefixing the number with 0b:

Set value to 9 (that's 1001 in binary!)
value = 0b1001

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 42 of 58

Binary Shift Register
A hardware shift register.

A shift register is an electronic circuit that allows an array of output pins to be set HIGH or LOW based on a sequence of binary
1's and 0's that are "shifted-into" a single input pin.

Shift registers are a fundamental building block of computers, and a handy way to control lots of output devices (like LEDs) with
just a handful of output pins.

binary shift register: https://en.wikipedia.org/wiki/Shift_register

Byte
A unit of computer memory.

A byte is made up of 8 bits.

With 8 bits you can represent 28 = 256 numbers.

Computer memory and storage devices are often described by how many bytes of data they can store.

A single "gigabyte" or "gig" is actually 1,073,741,824 bytes! (that's over 1 billion)
Most computers can access memory addresses one byte at a time.

Here's an example of the memory layout of the word "HELLO" in a standard character encoding:

BINARY SHIFT REGISTER

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 43 of 58

https://en.wikipedia.org/wiki/Shift_register

Below is the binary layout of bits in a computer, counting from 0, 1, ...up to 255, which is the largest number that can be stored in a
single byte.

Character Encoding
From numbers to symbols and back (ASCII and friends)

Computer memory is just a sequence of bytes

...and each byte is a number from 0-255.

So how does the computer encode a bunch of numbers into text strings like "Hello, World"?

Simple! Each letter of the alphabet has its own assigned number.
That goes for punctuation and other symbols too. Altogether they're called characters.

Here's an example of how you might encode the first three letters of the alphabet:

'A' → 65
'B' → 66
'C' → 67

Those numbers may seem random, but they're the actual values used for A, B, & C in the ASCII character set, which is the basic
character encoding used by most computers.

ASCII stands for "American Standard Code for Information Interchange".
Many other character encodings are available today, but ASCII is usually the basis for the English (Latin) alphabet.
The Unicode standard covers character encoding for most of the world's written languages.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 44 of 58

Python strings can be translated to and from ASCII integers using the functions:

ord(c) # Return the integer Character Encoding for
 # the single-character string 'c'.

chr(n) # Return the string whose Character Encoding
 # is the integer 'n'

Table of Printable ASCII Characters

ord() chr()
--
 32 SP (Space)
 33 ! (exclamation mark)
 34 " (double quote)
 35 # (number sign)
 36 $ (dollar sign)
 37 % (percent)
 38 & (ampersand)
 39 ' (single quote)
 40 ((left opening parenthesis)
 41) (right closing parenthesis
 42 * (asterisk))
 43 + (plus)
 44 , (comma)
 45 - (minus or dash)
 46 . (dot)
 47 / (forward slash)
 48 0
 49 1
 50 2
 51 3
 52 4
 53 5
 54 6
 55 7
 56 8
 57 9
 58 : (colon)
 59 ; (semi-colon)
 60 < (less than sign)
 61 = (equal sign)
 62 > (greater than sign)
 63 ? (question mark)
 64 @ (AT symbol)
 65 A
 66 B
 67 C
 68 D
 69 E
 70 F
 71 G
 72 H
 73 I
 74 J
 75 K
 76 L
 77 M
 78 N
 79 O
 80 P
 81 Q
 82 R
 83 S
 84 T
 85 U
 86 V
 87 W
 88 X
 89 Y
 90 Z
 91 [(left opening bracket)
 92 \ (back slash)
 93] (right closing bracket)
 94 ^ (caret cirumflex)
 95 _ (underscore)
 96 ` (backtick)
 97 a
 98 b
 99 c
100 d
101 e
102 f
103 g

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 45 of 58

104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 { (left opening brace)
124 | (vertical bar)
125 } (right closing brace)
126 ~ (tilde)

Computer Simulations
Creating virtual worlds with code

A computer simulation is code that builds a model of something, and lets you play with that model.

In a video game, the model could be a Race Car, Football Team, or a Fictional Creature.

Simulations let you explore "virtual" situations, both realistic and imaginary, that might be difficult or impossible to do in the real world.

Simulations are used in a huge variety of applications:

Designing and testing of airplanes and spacecraft
Video games
Running flight simulators to train pilots
Forecasting the weather
Testing traffic adjustments to design better roadways
Investigating soil chemistry in agriculture
Validating electrical circuits
Testing bridges and buildings before construction

CPU and Peripherals
Parts of the Computer

The "brain" of the computer that executes your code is the Central Processing Unit (CPU) and memory system. When you interact
with a computer, it is the Peripheral devices that you touch, see, and hear.

Common Peripherals:

LED lights
Display monitor
Push buttons
Keyboard
Mouse / Trackpad
Speakers
Printers (2D, 3D)

Peripherals that bring information INTO the CPU are called Input devices. Those that send information OUT of the computer are
Output devices. Some peripherals have both input and output functions.

Think of the computer peripherals you interact with every day...

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 46 of 58

If your brain is your body's CPU, what are its peripherals?

Debouncing
Prevent multiple analog triggers

Real-world sensors are almost never perfect

Analog inputs can easily bounce around between one value and the next.

Your program almost always expects a digital input but the world is mostly analog!

Real-world example

The button press is probably the most common example of bouncing: When a person presses a button they usually expect that the
button press will cause an action... ONE, SINGLE action.

Unfortunately, the electrical contact may not close instantly or electricity could arc prior to the contact closing.

The single, physical button press could register multiple times in your program.

This can cause unexpected behavior - maybe even dangerous behavior.

The solution:

The best solution is normally just to add a delay.

Waiting in-between readings will give the analog sensor time to settle into an "expected" value.

It can also give a physical contact the opportunity to fully close before reading again!

You can get more complex with your debouncing:

You could use an average value to smooth out your analog readings.
You could add a hardware circuit to automate the debounce.

Debugging
Fixing your code

What is a 'bug'?

When your program doesn't do what you intended, it's called a bug.

Actually, most of the time the computer is doing exactly what you told it to do! But as a program gets bigger and more complex, it gets
harder for us humans to understand. Debugging is the process of understanding what the computer is actually doing, so you can
change the code to do what you want it to do.

On rare occasions there may be a bug that's a problem in hardware rather than your
code. One famous bug was noted by renowned computer scientist Admiral Grace Hopper,
in her logbook shown here, while doing research using a US Navy computer in 1947.

Yes, that's an actual bug - a moth was stuck in one of the computer's mechanical relays!

How are bugs fixed?

Apart from checking the computer for moths hanging around, programmers often use
additional software, called a debugger. Debuggers allow stepping through a program and
viewing its progress, variables, etc., one line at a time.

Watching how each statement changes the program's control flow and variables
makes bugs much easier to find and fix.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 47 of 58

Divide and Conquer
Handling complexity

"The most fundamental problem in software development is complexity. There is only one basic way of dealing with complexity:
divide and conquer."

-- Bjarne Stroustrup, Creator of the C++ programming language

Efficiency
Writing code that conserves CPU and memory resources.

All computers have limitations in the speed of their CPUs, the amount of memory available to store programs and data, etc.

It is very easy to write a program that consumes all the memory in your computer. Just append something to a list a few trillion times;
if that's not enough, keep squaring the numbers and you'll soon reach the limits of your machine!

Along the way you'll find that even on a fast computer there's stuff you can do in your code that negatively impacts the user
experience.
Writing efficient code is all about not doing that!

How to Write Efficient Code?

The most important step is to carefully consider the algorithms and data structures your program needs to get the job done.

Consider how the number of operations the CPU must perform might grow as your program runs.
Consider how the size of strings, lists, dictionaries, and other data structures might grow as well.

Can it be done with fewer steps? Can it be done with less memory?

Don't get carried away

Readability is almost always more important than efficiency. Heed the following Ancient CS Wisdom:

"We should forget about small efficiencies, say about 97% of the time;
premature optimization is the root of all evil."
- Sir Tony Hoare (popularized by Donald Knuth)

But also... don't be a Shlemiel!

Credit to Joel Spolsky for this Yiddish joke which illustrates how algorithms often go wrong.

Shlemiel the Painter's Algorithm

Shlemiel gets a job as a street painter, painting the dotted lines down the middle of the road. On the first day he takes a can of paint
out to the road and finishes 300 yards of the road. “That’s pretty good!” says his boss, “you’re a fast worker!” and pays him a kopeck.

The next day Shlemiel only gets 150 yards done. “Well, that’s not nearly as good as yesterday, but you’re still a fast worker. 150
yards is respectable,” and pays him a kopeck.

The next day Shlemiel paints 30 yards of the road. “Only 30!” shouts his boss. “That’s unacceptable! On the first day you did ten
times that much work! What’s going on?”

“I can’t help it,” says Shlemiel. “Every day I get farther and farther away from the paint can!”

LCD

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 48 of 58

Liquid-Crystal Display (LCD)

Liquid-Crystal Displays are flat panel hardware peripherals used to output text and
graphics.

You see these in many different electronic products, from TVs to smart
watches.

They can display thousands or even millions of tiny Red, Green, Blue (RGB) pixels.

The CodeX display is a TFT-LCD with 240x240 pixels.

That's a total of 240 x 240 = 57,600 pixels!
TFT stands for "Thin Film Transistor"

Those transistors like switches that turn on/off each of the RGB color
elements in every pixel.
You can see them in the upper-left corner of each (gray shaded) pixel in
the diagram above.

LED
Light Emitting Diode

A diode is a fundamental electronic component. There are lots of them inside every computer! LEDs are a special kind of diode,
packaged in a clear case so the light they emit can shine out.

The CodeX has 4 bright color pixel LEDs plus 6 more red LEDs onboard.

The CodeBot has 17 visible LEDs (red, green, and yellow) as well as 8 infrared LEDs it uses for
sensors.

Modulo and Div Operators
Sometimes it's all about the remainder

Modulo

The % symbol is called modulo.

Sounds like a great Superhero name... or maybe a villain?
It's nice, really! It gives the remainder from a division.

Seriously, Fractions!?

You may remember learning about the remainder when writing improper fractions as mixed numbers. Python can give you the
quotient and remainder separately with // and % operators:

In Python:
17 // 5 # 3 (quotient)
17 % 5 # 2 (remainder)

Integer Division

 = 3R2
5

17

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 49 of 58

1
2
3
4
5
6
7
8
9

Notice above, when you use the // operator you will always get an int result. Another name for this is integer division. The
fractional part is truncated.

It does not round up or down... If you need rounding try the built-in round() function.

Monotonic
Consistently not increasing or not decreasing

Monotonic is a "fancy word" for a function that is either always not-decreasing or always not-increasing.

Why does that matter for coding?

To illustrate, consider the ticks_ms() function from the time module. Note line 6 which is RISKY...

import time
start_time = time.ticks_ms()
...do some time consuming stuff
end_time = time.ticks_ms()

#elapsed = end_time - start_time # RISKY!
elapsed = ticks_diff(end_time, start_time)

print(elapsed)

Why is ticks_diff() needed?
The ticks_ms() function returns an integer that continuously counts up the number of elapsed milliseconds.

Typically if you save a ticks_ms() value, and later save another one, the second will be a larger number.
In that case, no problem! Just subtract the first value from the second one and you've got the diff right?

Oops! It's not monotonic!

What happens when the value of ticks_ms() grows to reach the maximum size of an integer?

It "wraps around" to ZERO!
Ideally the value would be "monotonic" - meaning it always increases. Then this wouldn't be a problem. Alas, that is not the
case!

So, if you risk just doing standard subtraction rather than ticks_diff() you might run into the case where you grab the start_time
value, and then get an end_time value that is LESS than the start_time!

The ticks_diff() function handles the wrap-around so you always get the proper diff!

Pins
Input / Output connections

Pins are physical connection points that allow digital or analog electrical signals to flow from one device to another.

These are places where you can wire to sensors, motors, lights, displays, speakers, and more!

Signals through the pins are generally accessed through software interfaces built into the CPU.

Pins can be used to:

Output digital signals (LOW or HIGH)
Read digital signals
Some can read analog signals (from a sensor)
Output an analog PWM value

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 50 of 58

Pixel
Elements of a picture

The term pixel is short for "picture element". In computer graphics, pixels are the small "dots" used to compose larger
images.

When you're looking at your computer or phone screen, you may not be able to see the tiny dots that make up all the
images and text, without a magnifying glass or microscope.

But they are there!

PWM
Pulse-width Modulation

How can you vary the amount of electric power sent to a motor or light?

Is it possible if you only have a binary output?
All you can do is turn it fully ON or OFF, right?
But what if you want to set a light or motor to 50% power?

You need analog control!

...Actually you CAN vary the amount of power using pulses!

Duty Cycle

With Pulse Width Modulation (PWM) you are turning the power
ON and OFF rapidly.

The percentage of ON time is called the Duty Cycle.
Full power = 100%
Half power = 50%
Zero power = 0%

Frequency

How rapidly should you pulse?

The answer depends on the type of device you're controlling.

For example, many PWM applications run at frequencies
around 1kHz.

That means a pulse is sent every 1ms
Pulse-width of 0.1ms → 10% duty cycle.
Pulse-width of 0.9ms → 90% duty cycle.

PWM is used widely to control many types of devices.

The microcontroller you're using has built-in hardware to do
PWM.

By adjusting the pulse frequency and duty-cycle your code has complete control of this powerful capability!

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 51 of 58

Radio Frequencies
Wireless communication for computers

You have probably heard of WiFi and Bluetooth. Those are just two of the
wireless standards that enable the computers and mobile devices you use
every day to communicate.

There are many other standard (and non-standard) wireless methods
used in homes, schools, offices, and industrial applications.

Digital radios work by encoding information (like Python strings!) and sending it as high-frequency pulses of electrical energy into an
antenna, which in turn creates a pulsating ("modulated") electromagnetic field that radiates through space and can be received by
other antennas.

Radio Frequency (RF) - what does high-frequency mean?

Well, first consider frequencies that you can hear - audio frequencies.

For example, a 1000 Hz tone you can play on a speaker. That's kind of a high pitch, but you might be able to whistle that high...
In case you didn't know, Hz stands for "Hertz" which is the unit for frequency meaning cycles per second.

Standard Bluetooth and WiFi frequency is 2.4 GHz

That's giga Hertz -- 2.4 billion pulses per second!
Okay, that's way too high to whistle :-)

Readability
Code that's easy to read and understand

"Programs must be written for people to read, and only incidentally for machines to execute."

-- H. Abelson and G. Sussman

Readability is critical to writing good software!

Have you ever written yourself a note and then come back the next day to read it and didn't understand what you wrote?

That can happen with software too!

Some tips for good readabiliy:

1. Break all repetitive tasks into functions.
2. Give your functions meaningful names.

sum_numbers(x, y) is clear
do_something(x, y) is not very clear

3. Use names for your variables that clearly identify their purpose.
frequency = 60 is clear
foo = 60 is not very clear

4. Leave comments in confusing sections that explain the code.

But it's my code and I know what it does!!!

Always write code as though someone else will need to read it.
Most of the time you are not writing software on your own and your co-workers will appreciate readability!
...and your future self will thank you for it too!

Reboot
Start over

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 52 of 58

When a computer is first powered ON, it's called Booting Up[1]. Your device has a push-button that resets the main CPU, causing it
to start back from the beginning and run whatever code is loaded again.

1. The term comes from the phrase: "Pull yourself up by your bootstraps" - you know, those loops at the back of boots that help
you pull them onto your feet! Think of the computer putting its boots on, after it wakes up first thing in the morning!

Refactoring
Improving the structure of your code

As you write code there will be occasions when you realize things could be made much better:

You may notice repeated logic that could be made into a function.
After writing a sequence of if conditions you may realize a dictionary would be more readable.
You may realize there's a better, simpler, more elegant algorithm to achieve your goals.
Your code may just become complex and messy, in need of restructuring.

In all of these cases, it is time for refactoring.

What's with the re-factoring? Well, it's called that based on the assumption that you've already factored the problem to some degree
when you wrote the code in the first place. That's all part of divide and conquer, right?

Tips on Refactoring

1. See the big picture. Take a moment to look over your code at a high-level, and really understand what the "big concepts" are.
2. Get your tests ready.

How will you know you haven't broken anything after you refactor?
Before you start, come up with a set of tests to prove everything works. Run the tests on the un-refactored program first!

3. Take it one small step at a time, make small changes, and test your code along the way.
It really helps if you can keep the code in a "runnable" state as you evolve it to a better, refactored form.

REPL
Read Evaluate Print Loop

The REPL gives you a way to interactively enter commands and view outputs in a text format. You can:

Call built-in and user-defined Python functions.
Check values of global variables.
See output from print statements in running code.

Is "REPL" really a good name for this?

Well, if you were to code your own "REPL" in Python, it might look something like this:

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 53 of 58

while True:
 # R ead a statement from the Keyboard. (press ENTER)
 # E valuate the statement. (execute the Python code!)
 # P rint the result to the Console.
 # L oop (this is a while loop after all...)

Besides being a place to see print statement output, the REPL is a great way to test out snippets of code, language features, and
APIs as you decide how to use them in your code!

Keyboard Shortcuts

The REPL has some shortcuts to save typing.

Try using your keyboard ↑ and ↓ arrow keys to browse previous commands!
Just hit ENTER when you want to execute a command.

Opening the REPL

In CodeSpace just open the Console panel at the lower right.

State
Status of a system with transitions

A Finite-State Machine, sometimes called simply a State Machine, is a key concept in software and hardware systems.

Your program can only be in one of a known set of "states" at any given time. Usually state is based on what's in memory - the
contents of variables in your code.

Keeping track of states helps you as a programmer understand and manage your code.

As code bases grow and more features are added, the "state" of a device can get complicated.
There may be hundreds of states and multiple different paths to enter and exit each one.
Each state might have its own set of conditions that it is tracking.

Moving between states is called a transition.

The program can transition from one state to another when certain conditions are met.

An example of a finite-state machine is a traffic light.

Most traffic lights are three colors:

Red
Yellow
Green

Traffic lights, in the United States of America, generally only have three states:

GREEN = Traffic can go
YELLOW = Caution the light will soon be red
RED = Traffic must stop

The transitions are simple and all transitions occur after a time delay:

GREEN always transitions to YELLOW
YELLOW always transitions to RED
RED always transitions to GREEN

Here is a visual representation of a state machine for a traffic light in the USA:

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 54 of 58

UI
User Interface

In computer lingo, the User Interface or UI is the part of a computer that humans interact with directly.

Usual examples would be a keyboard, mouse, and screen.

On the CodeBot and similar physical computing devices, the main built-in UI consists of buttons and LEDs.

USB
Universal Serial Bus

You may recognize this connection as one that's used for charging many mobile phones, headsets, and other devices. In addition to
providing power, USB can also send information!

Connected devices can be powered by USB, but also it's the main way that CodeSpace communicates with your device's CPU.

CodeSpace
Advanced Debugging
Additional debugger features

CodeSpace includes advanced debugging tools to give more control over a program being debugged.

To enable advanced debugging, use the view menu (View → Show Advanced Debug). Three new buttons will appear on the toolbar:

Step Next

The Step Next button will step to the next line, not entering function calls.

Step Into

The Step Into button will step to the next line, and into functions along the way.

Step Out

The Step Out button returns from the current function, letting you step from where it was called.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 55 of 58

Editor Shortcuts
Keyboard hotkeys to write code faster

Hotkeys in CodeSpace are combinations of keys which complete a task. They are written with a '-' between two key names, like
CTRL-Z, which you would use by pressing the Control key and z at the same time, then releasing.

CTRL-X Cut

Cutting text will remove it from the editor, and store it to be Pasted later.
In the Editor you can select text using the mouse, or hold down shift and use the arrow keys on your keyboard.
Cut the selected text using CTRL-X on the keyboard, or the Edit menu.

CTRL-C Copy

Copying text will not change what's in the editor, but will store a copy to be Pasted later.
In the Editor you can select text using the mouse, or hold down shift and use the arrow keys on your keyboard.
Copy the selected text using CTRL-C on the keyboard, or the Edit menu.

CTRL-V Paste

Put the editor cursor where you want to insert text, and press CTRL-V or use the Edit menu to Paste.

CTRL-Z Undo

Undo the last change to your code using CTRL-Z on the keyboard, or the Undo toolbar button.

CTRL-F Search

Search for text in your program using CTRL-F on the keyboard, or the Search toolbar button.

CTRL-H Replace

Search and Replace text in your program using CTRL-H on the keyboard.

TAB or SHIFT-TAB Indent

Indent or Unindent a selected block of text in your program.

CTRL-/ Comment Toggle

Comment-out or un-Comment the current line or selected block of code using CTRL-/

File System
How to Use the CodeSpace File System

The CodeSpace filesystem can be interacted with in two different ways:

Through the UI, which will be detailed here, or
Programmatically through File Operations.

File Browser
Many file actions occur in the file browser menu.

The file browser gives you a visual representation of the files in your filesystem and allows you to perform operations on them.

The file browser can be accessed with two simple steps:

1. Click the 'File' button in the top left hand corner of your window.
2. Click 'Browse Files' in the dropdown which was opened in the previous step.

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 56 of 58

Open

In the 'Browse Files' menu, to open a file either:

Double click the file, or
Select the file with a single click, then click 'Open' in the bottom right hand corner of the 'Browse Files' window.

File Information Window
Within the file browser, each file has its own 'File Information Window'.

From the 'File Information Window', you can delete or rename a file.

In the 'Browse Files' menu, to open the 'File Information Window':

1. Click the pencil icon on the right side of filename.

Delete

In the 'File Information Window', to delete a file:

1. Click the 'Delete' button in the top right corner of the window.

Rename

In the 'File Information Window', to rename a file:

1. Type your desired filename in the 'Rename' text box.
2. Click 'OK'

Tabs
When you open a file using the UI, a new tab is created.

Tabs provide an interface for switching between and closing your opened files.

Syntax Highlighting
Why the code has colors

Wondering how to add colors to the Text Editor panel?

No problem!

The Editor automatically colors Python keywords and other language syntax to make your code easier to read. This is called syntax
highlighting, and it's a common feature of text editors built for coding.

Syntax? That's just a fancy word for the "rules" about how words and phrases go together to form a language. Computer languages
and human languages alike have syntax rules to follow if you want to be understood!

LiftOff Peripherals
Servos
DC Servo Motors

What is a servo?

A servo is more than just a motor. It contains:

A DC motor

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 57 of 58

A controller circuit
An internal feedback mechanism
An amplifier (or gearbox)

How do I make the servo go?

Servo motors require an analog control signal to operate.

You can send an analog control signal using PWM!

Nearly all servos operate with a 50 Hertz (Hz) control signal.

50 Hz = 50 times per second = 20 millisecond analog period.

50 Hz became a standard long ago due to the simplicity of the hardware design.

Types of Servos

The 360 Continuous Rotation Servo which can rotate continuously backward and forward.

Duty Cycle (ms) Speed Direction
0.5 100% Clockwise
0.75 75% Clockwise
1.0 50% Clockwise
1.25 25% Clockwise
1.5 0% Stopped
1.75 25% Counterclockwise
2.0 50% Counterclockwise
2.25 75% Counterclockwise
2.5 100% Counterclockwise

The 180 Positional Servo which can move to a specified position and hold in place.

Duty Cycle (ms) Position
0.5 90 Degrees Clockwise
1.0 45 Degrees Clockwise
1.5 Centered
2.0 45 Degrees Counterclockwise
2.5 90 Degrees Counterclockwise

Positional Servos Stay in Position

There is no OFF position for the 180 servo like there is for a 360 servo.

The 180 servo is always working to stay in position
If you push it either direction it will always come back to its set position

CodeSpace Toolbox Content

©2024 Firia Labs Appendix B 58 of 58

